skip to main content
APh/Ph/Ae/MS 153
Fundamentals of Energy and Mass Transport in Small Scale Systems
9 units (3-0-6)  | third term
Prerequisites: ACM 95/100 ab or equivalent.
The design of instrumentation for cooling, sensing or measurement in microsystems requires special knowledge of the evolution and propagation of thermal and concentration gradients in confined geometries, which ultimately control the degree of maximum energy and mass exchange. A significant challenge facing the microelectronics industry, for example, is mitigation of hot spots in densely packed high power chips for artificial intelligence to prevent thermal runaway. This course offers a concise treatment of the fundamentals of mass and energy transport by examining steady and unsteady diffusive and convective processes in small confined systems. Contrasts with macroscale behavior caused by the effects of small scale confinement and reduced dimensionality will be examined. Sample problems will be drawn from systems in applied physics, material science, electrical and bioengineering. Students must have working knowledge of vector calculus, ODEs, basic PDEs, and complex variables.
Instructor: Troian